
ams209_fall_2016 Documentation
Release 1.1

Dongwook Lee

September 23, 2016

CONTENTS

1 Announcements on Office Hours 3

2 Contents: 5
2.1 Disclaimers . 5
2.2 Course Mission . 5
2.3 About the Website . 5
2.4 License . 5
2.5 Syllabus . 6
2.6 Preliminaries . 6
2.7 Lecture Notes . 6

3 Webpages of class members 29

i

ii

ams209_fall_2016 Documentation, Release 1.1

Welcome to AMS 209 Foundations of Scientific Computing at AMS UCSC!

This is a class webpage where you can find the classnotes for the course. The contents herein are going to be continu-
ously updated throughout the quarter.

CONTENTS 1

https://ams209-fall16-01.courses.soe.ucsc.edu
https://www.soe.ucsc.edu/departments/applied-mathematics-statistics
http://www.ucsc.edu

ams209_fall_2016 Documentation, Release 1.1

2 CONTENTS

CHAPTER

ONE

ANNOUNCEMENTS ON OFFICE HOURS

1. With Dongwook (dlee79 _at_ ucsc _dot_ edu)

• TBA

3

ams209_fall_2016 Documentation, Release 1.1

4 Chapter 1. Announcements on Office Hours

CHAPTER

TWO

CONTENTS:

2.1 Disclaimers

These lecture notes on Foundations of Scientific Computing are going to be progressively under development for the
course AMS 209 at the Department of Applied Mathematics of the University of California Santa Cruz, Fall Quarter,
2016.

The most parts of the contents of the materials are in progress and they are continuosly getting updated and modified
throughout the entire quarter.

The materials are intended to serve as a good intelletual guidance for the course, and it is never meant to be neither
perfect nor best.

Please keep in mind that the topics that are covered in this class are very widely spreadout in many different areas.
Therefore the course materials provided here do not intend to be most updated and accurate. Rather, the purpose of this
classnote is to provide some levels of broader aspects in those various topics that play fundamental roles in scientific
computing.

2.2 Course Mission

This course is not a CS/CE course where you would study various programming languages, as well as software
engineerings, and hardware architectures, etc. in depth from theoretical aspects. If you’re interested in such topics
you’re in the wrong place.

Please note that the primary goal of the course is to focus on how to use scientific tools to successfully conduct your
researches in modern sciences from practical perspectives.

2.3 About the Website

These online class materials are writen in Sphinx.

2.4 License

All contents including example codes are lincesed under a Creative Commons Attribution 4.0 International License.

5

https://ams209-fall16-01.courses.soe.ucsc.edu
https://www.soe.ucsc.edu/departments/applied-mathematics-statistics
http://www.ucsc.edu
https://courses.soe.ucsc.edu/courses/ams
https://courses.soe.ucsc.edu/courses/ams
http://sphinx-doc.org
http://creativecommons.org/licenses/by/4.0/

ams209_fall_2016 Documentation, Release 1.1

2.5 Syllabus

Please note that these schedules are tentative and they may be modified if needed.

Week 1: Introduction to Unix/Linux basics including basic tools for programming – editors, compilers, libraries,
Makefiles, config files, ssh/scp/sftp, version control, code publication, etc.

Week 2-3: Introduction to basic algorithm development and program structures (e.g., data types, data structures, IF,
DO, and WHILE constructs, functions, subroutines, arrays, modules, etc.) common to many languages but
using Fortran (90 and above) as the primary example language.

Week 4: More advanced programming in Fortran (Fortran 90 or above), e.g. modular programming, dynamic array
allocation, user typed structures, I/O, debugging, etc.

Week 5: Introduction to object-oriented programming concepts through compare-and-contrast of C/C++ and Fortran.

Week 6-7: Introduction to flexible interpreted languages for interfaces using Python programming as the example.

Week 8: Basics of computer architecture (chip architecture, cache, network infrastructure, file systems, etc) with a
view to understanding code optimization, bottlenecks, debugging, etc.

Week 9: Data analysis and visualization: Introduction to basic analysis and visualization tools; good practices for
running codes in production mode.

Week 10: Introduction to good software engineering practices; code validation and verification.

2.6 Preliminaries

Q1. What is your name and what is your major?

Q2. Please tell me about your research interests.

Q3. List any courses you took in the past which required for you to use computers, including word processings.

Q4. What do you want to get the most out of it from this class? What is your motivation in taking this class?

Q5. What do you think scientific computing is about? Why do you think people study that?

Q6. What kinds of computing resources and softwares have you used?

Q7. What kind of computer(s) do you own and what do you do with them?

Q8. Do you have any computing exprience using Unix/Linux, or Mac OS X?

Q9. Are you familiar with LaTex?

Q10. Have you heard about version control, for instance, svn or git?

Q11. Have you been involved in any group project in the past?

Q12. How passionate are you in scientific computing? Please let me know if you have any comments and thoughts.

2.7 Lecture Notes

2.7.1 Chapter 1. Operation systems, Version controls, Remote access

Motivations and Needs for Scientific Computing

Let’s begin our first class with a couple of interesting scenarios.

6 Chapter 2. Contents:

ams209_fall_2016 Documentation, Release 1.1

Scenario 1

Consider you’re a chief scientist in a big aerospace research lab. See Figure 2.1. You’re given a mission to develop
a new aerospace plane that can reach at hypersonic speed (> Mach 5) within minutes after taking off. Its powerful
supersonic combustion ramjets continue to propel the aircraft even faster to reach to a velocity near 26,000 ft/s (or
7.92 km/s, or Mach 25.4 in air at high altitudes, or a speed of NY to LA in 10 min), which is simply a low Earth
orbital speed. This is the concept of transatmospheric vehicle the subject of study in several countries during the
1980s and 1990s. When designing such extreme hypersonic vehicles, it is very important to understand full three-
dimensional flow filed over the vehicle with great accuracy and reliability. Unfortunately, ground test facilities –
wind tunnels – do not exist in all the flight regimes around such hypersonic flight. We neither have no wind tunnels
that can simultaneously simulate the higher Mach numbers and high flow field temperatures to be encountered by
transatmospheric vehicles.

Fig. 2.1: Figure 1. DARPA’s Falcon HTV-2 unmanned aircraft can max out at a speed of about 16,700 miles per hour
– Mach 22, NY to LA in 12.

Scenario 2

Consider you’re a theoretical astrophysicist who tries to understand core collapse supernova explosions. See Figure
2.2. The theory tells us that very massive starts can undergo core collapse when the core fail to sustain against
its own gravity due to unstable behavior of nuclear fusion. We simply cannot find any ground facilities that allow
us to conduct any laboratory experiments in such highly extreme energetic astrophysical conditions. It is also true
that in many astrophysical circumstances, both temporal and spatial scales are too huge to be operated in laboratory
environments.

2.7. Lecture Notes 7

ams209_fall_2016 Documentation, Release 1.1

Fig. 2.2: Figure 2. FLASH simulations of neutrino-driven core-collapse supernova explosions. Sean Couch (2013),
ApJ, 775, 35.

Scenario 3

Consider you a golf ball manufacturer. See Figure 2.3. Your goal is to understand flow behaviors over a flying golf
ball in order to make a better golf ball design (and become a millionaire!) Although you’ve already collected a wide
range of the laboratory experimental data on a set of golf ball shapes (i.e., surface dimple design), you realize that it is
very hard to analyze the data and understand them because the data are all nonlinearly coupled and can’t be isolated
easily. To keep your study in a better organized way, you wish to perform a set of parameter studies by controlling
flow properties one by one so that you can also make reliable flow prediction for a new golf ball design.

Fig. 2.3: Figure 3. Contours of azimuthal velocity over a golf ball: (a) Re = 2.5 x 10^4; (b) Re = 1.1 x 10^5. C. E.
Smith et al. (2010), Int. J. Heat and Fluid Flow, 31, 262-273.

As briefly hinted above, in practice there are various levels of difficulties encountered in real experimental setups.

8 Chapter 2. Contents:

ams209_fall_2016 Documentation, Release 1.1

When performing the above mentioned research work, computational fluid dynamics (CFD) therefore can be the
major player that leads you to success because you obtain mathematical controls in numerical simulations. Let us
take an example how numerical experiment via CFD can elucidate physical aspects of a real flow field. Consider
the subsonic compressible flow over an airfoil. We are interested in answering the differences between laminar and
turbulent flow over the airfoil for Re = 10^5. For the computer program (assuming the computer algorithm is already
well established, validated and verified!), this is a straightforward matter – it is just a problem of making one run with
the turbulence model switched off (for the laminar setup), another run with the turbulence model switched on (for the
turbulent flow), followed by a comparison study of the two simulation results. In this way one can mimic Mother
Nature with simple knobs in the computer program – something you cannot achieve quite readily (if at all) in the wind
tunnel. Without doubt, however, in order to achieve such success using CFD, you’d better to know what you do exactly
when it comes to numerical modeling.

CFD as a Scientific Tool

We are now ready to define what CFD is. CFD is a scientific tool, similar to experimental tools, used to gain greater
physical insights into problems of interest. It is a study of the numerical solving of PDEs on a discretized system that,
given the available computer resources, best approximates the real geometry and fluid flow phenomena of interests.
CFD constitutes a new “third approach” in studying and developing the whole discipline of fluid dynamics. A brief
history on fluid dynamics says that the foundations for experimental fluid dynamics began in 17th century in England
and France. In the 18th and 19th centuries in Europe, there was the gradual development of theoretical fluid dynamics.
These two branches – experiment and theory – of fluid dynamics have been the mainstreams throughout most of the
twentieth century. However, with the advent of the high speed computer with the development of solid numerical
studies, solving physical models using computer simulations has revolutionized the way we study and practice fluid
dynamics today – the approach of CFD. As sketched in Fig. 4, CFD plays a truly important role in modern physics as
an equal partner with theory and experiment, in that it helps bringing deeper physical insights in theory as well as help
better desiging experimental setups. See Figure 2.4.

Fig. 2.4: Figure 4. Three healthy cyclic relationship in fluid dynamics.

The real-world applications of CFD are to those problems that do not have known analytical solutions; rather, CFD is
a scientific vehicle for solving flow problems that cannot be solved in any other way. In this reason – the fact that we
use CFD to tackle to solve those unknown systems – we are strongly encouraged to learn thorough aspects in all three
essential areas of study: (i) numerical theories, (ii) fluid dynamics, and (iii) computer programing skills.

2.7. Lecture Notes 9

ams209_fall_2016 Documentation, Release 1.1

Items for the Class

Hardware (hardly free)

• A computer: laptop or desktop. No tablet PCs. Better if you already have a linux-based one or Mac. For a
Windows-based PC, you need to install some packages to use a linux-based operating system.

Softwares (mostly free)

Essential software (required, free):

• Linux/Unix or Mac OSX with Xcode (no Windows).

• Compilers for Fortran 90, C/C++ (e.g., gfortran, gcc)

• Debuggers (gdb , lldb, etc.)

• Python and its scientific libraries (e.g., Anaconda, NumPy and SciPy, Matplotlib, etc.)

• Version control system, e.g., Git or SVN

• Text editors (GNU emacs, aquamacs, vi, vim, etc.)

• Sphinx

• Latex packages (texshop, LaTeXiT)

Extra software (optional, free or commercial):

• Matlab or GNU Octave

• software package manager (Yum, Homebrew, MacPorts, etc.)

• GNU plot, IDL

• symbolic math using sage

• even more for high performance computing on Mac

Others (absolutely free)

• Most importantly, your passion and energy to learn new things

Programming Languages, Platforms, Operating Systems

Scientific languages

One of the crucial components of the entire course work is to write computer programming codes for homework sets,
programming assignments, and a final coding project.

A choice for a reference language is going to be Fortran 90 in this course. Fortran 90 (or higher) has been one of the
most widely used programming languages in high performance computing communities for over half a centry. It is
easy, compatible, and has been chosen for various benchmark tests that run on large scale computing architectures, or
supercomputers.

The main goal in this course is to learn practical experiences in different programming languages as well, such as C
and python, and learn how to use them for of scientific computing.

10 Chapter 2. Contents:

https://gcc.gnu.org/fortran/
http://www.gnu.org/software/gdb/
http://lldb.llvm.org
https://store.continuum.io/cshop/anaconda/
http://www.numpy.org
http://www.scipy.org
http://matplotlib.org
https://github.com
https://subversion.apache.org
https://www.gnu.org/software/emacs/
http://aquamacs.org
https://www.cs.colostate.edu/helpdocs/vi.html
http://www.vim.org
http://sphinx-doc.org
http://pages.uoregon.edu/koch/texshop/
http://www.macupdate.com/app/mac/17889/latexit
http://www.mathworks.com/products/matlab/
https://www.gnu.org/software/octave/
https://en.wikipedia.org/wiki/Yellowdog_Updater,_Modified
http://brew.sh
https://www.macports.org
http://www.gnuplot.info
http://exelisvis.com/ProductsServices/IDL.aspx?utm_partnerid=adwords&gclid=CMXt_I2ekcgCFQZafgodQPAJkQ
http://doc.sagemath.org/html/en/index.html
http://hpc.sourceforge.net

ams209_fall_2016 Documentation, Release 1.1

You should be able to submit your course assignments by successfully implementing required numerical algorithms
in those languages.

Computing platforms

In order to conduct scientific programming it is required that you have an access to a Linux/Unix computing platform,
where you can excersise such series of programming studies.

Basically, there are several options to bring a Linux/Unix computing system to your daily scientific adventures. Please
see also Installing Linux on Your PC.

• if your machine is either a Linux or Mac machine, use your own machine to run your code locally.

• if your machine is a Windows PC, you can remotely access to a Linux computer using an X-forwarding terminal
such as PuTTy over the network. Putty is one of the SSH clients on Windows allowing you to work on a remote
Linux computers.

• if you prefer to run programming locally rather remotely (e.g., limited internet access at your place), you can
either install Cygwin which brings you functionality similar to a Linux distribution on Windows. Note that
Cygwin is not a way to run native Linux apps on Windows.

• if you rather wish to have a native Linux setup on your Windows PC, you can run a pure linux environment using
a free virtualization software called virtualbox which is quite excellent. This also allows file sharing between
your host operating system (e.g., Windows) and the virtual operating system (e.g., Linux).

Remark You can also learn useful tips not only from google searches but also from youtube these days. So please use
those visual resources as well as readable resources.

Remark And, don’t forget one thing. If you need help, please don’t be shy, hesitating to ask around good people. And
I am one of them, hopefully.

Computing Resources in AMS Even though you might have your own computing resources over the course (your
own Linux or Mac), we choose the default computing platform to be the Linux Grape cluster from the AMS depart-
ment. You can see the description of Grape.

If you are not an SOE student, please come to see the instructor to get an account on Grape. Basic Fortran and C/C++
compilers (e.g., GNU gfortran), some other necessary libraries, and softwares (gnuplot, matlab, idl, etc) are available
on Grape. If you find any specific software needs to be installed, please let the instructor know your request.

Since it uses a Linux operating system (Grape runs on a Linux operating system called Rocks), and it is a remote
cluster, in order to remotely access to Grape, you will need to

• learn how to use Unix/Linux command lines (or simply commands) (see Basic Unix/Linux Commands)

• make sure you have remote access to it and to its text editors (emacs, xemacs, vi, vim, etc.).

As mentioned, this should be trivial if you are using either a Linux or Mac machines. If you are a Windows PC user,
you can install PuTTy (enough for accessing Grape remotely) or Cygwin (allowing remote access capability as well
as Linux functionality).

If you haven’t had any chance to work on Linux/Unix type operating systems, please make sure you first familiarize
yourself with basic Linux/Unix commands (This is very crucial. See Basic Unix/Linux Commands). It is your prime
responsibility to learn about working on Linux/Unix environment as quickly as possible – you should trust that you
can do it!

The instructor is happy to help you, however, is bound to be limited to provide you with detailed technical supports at
all levels.

Remark If you prefer to use your own laptop/desktop to program, it is your responsibility to install Fortran and all
the libraries we will be using. You should be able to find a free Fortran 90 compiler (e.g., GNU gfortran) for most

2.7. Lecture Notes 11

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://www.cygwin.com
https://www.virtualbox.org
https://www.soe.ucsc.edu/sites/default/files/ams-computers.pdf

ams209_fall_2016 Documentation, Release 1.1

platforms. The most basic one will be sufficient for this class, but please be aware that the quality of a compiler has a
lot to do with the speed of execution of the program.

Remark In order to obtain an account on the Grape Linux cluster machine in AMS, please go visit the link and request
an account for youself for the course:

• <https://accounts.soe.ucsc.edu/accounts/register>

You need to specify me as your sponsoring faculty member.

Scientific Computings on Linux/Unix, Mac OS X

Most projects of scientific computing heavily rely on developers’ interactive programming and software handlings
across various components of softwares. Engineers, scientists and researchers in scientific computing are often as-
sumed to carry out programming practices using different combinations of command lines on a Unix-based operating
system (OS).

Shell Most common examples of such OS are Unix, Linux and Mac OS X, where you perform computing jobs by
typing in your command lines on a terminal, called a shell.

The shell provides users with a user interface by which users can access the computer’s operating system and/or
interact with target software packages in order to carry out computational jobs.

If your experience with computers has only been in using Windows PC, with which you interact by clicking some icon
apps to open and conduct jobs, this will be an absolutely new opportunity to use computers in a very different way.

Although a Windows system has its kernel OS, called DOS, where users can possibly run command-line jobs, we will
not use DOS (like every wise soul wouldn’t) for scientific computing.

Installing Linux on Your PC There are a couple of different ways to run Unix/Linux-system on your Windows PC.
Here are my recommentations (you will need to do one of them).

If you are considering an updating your laptop anyway, please do:

• get a Mac, and download and install Xcode on it. This can be easily done in a terminal window (go to Applica-
tions –> Untilities –> Terminal to open a terminal) by typing in (also see how-to-1):

$ xcode-select --install

• get a PC, erase the Windows OS, and install a Linux OS (e.g., Ubuntu) as a sole operating system.

Otherwise, if you want to keep your old Windows PC but want to do some cool scientific computings, please do:

• install virtualbox (easy and best),

• install Cygwin (altenatively good and efficient),

• configure dual-boot to run both Windows and Linux,

• access an external Linux machine over the network using PuTTy (least recommended)

• More to read here

If you are one of the computer grus, you might as well come up with a crazy combination, such as (I saw few people
who did this):

• get a Mac, erase Mac OS X, and install Linux on it (you wonder why you would want to do this?).

Remark Further details on the Linux installing instructions on PCs can be easily found online, e.g., how-to-2. You will
also find online tutorials on how-to instructions on Youtube as well. Please don’t forget to use these great resources,
and of course, you’re always welcome to ask me or TA.

12 Chapter 2. Contents:

https://accounts.soe.ucsc.edu/accounts/register
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/DOS
https://developer.apple.com/xcode/download/
http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/
http://www.ubuntu.com/download
https://www.virtualbox.org
https://www.cygwin.com
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.howtogeek.com/170870/5-ways-to-run-linux-software-on-windows/
http://www.howtogeek.com/170870/5-ways-to-run-linux-software-on-windows/

ams209_fall_2016 Documentation, Release 1.1

Basic Unix/Linux Commands In this section we give a quick overview on some of the basic Linux commands.
There are few rules in using command lines in Linux. Several important rules are

• Commands are case-sensitive.

• Make sure you always logout yourself by typing exit when you’re done.

• The Linux command lines enables you to create complex functions by combining built in command lines to-
gether. This capability gives you countless ways to make your commands work in various different ways.

Here you’re introduced to learn very basic Linux command lines. For more comprehensive studies on various options
associated with Linux commands, you can use to display a manual page using the man command followed by your
search commands. For instance if you want to learn more about cp command

$ man cp

1. Here are some basic commands for managing files:

• list directory contents:

$ ls

• ls in long format:

$ ls -l

• ls all entries of contents:

$ ls -a

• rename (or move) filename1 to filemane2:

$ mv filename1 filename2

• copy filename1 to filename2:

$ cp filename1 filename2

• remove a file named filename:

$ rm filename

• display the contents of a file named filename as much as will fit on your screen:

$ more filename

• similar to more with the extended navigation capability allowing both forward and backward navigations:

$ less filename

• print the entire filename rather than a page at a time:

$ cat filename

• view multiple files’ contents and direct the output to save into a new file output using standard output >
(STDOUT):

$ cat filename1 filename2 > output

• tells you number of lines, words and characters in filename:

$ wc filename

2.7. Lecture Notes 13

ams209_fall_2016 Documentation, Release 1.1

• creating an empty file named filename (multiple filenames after touch command will create multiple
empty files):

$ touch filename

• find a file named filename in the current directory .:

$ find . -name filename

• find a file named filename in the entire file system /:

$ find / -name filename

• find a file named filename only under your personal directory ~/:

$ find ~/ -name filename

• find a search keyword ams209 among all files with extension .tex:

$ grep "ams209" *.tex

2. Here are some basic commands for managing directories:

• create a new directory called dirname:

$ mkdir dirname

• change directory, meaning you go to a directory called dirname:

$ cd dirname

• tells you where you currently are in the directory tree:

$ pwd

• remove empty directory: it will fail if the directory is not empty:

$ rmdir dirname

• remove non-empty directory with all the contents therein:

$ rmdir -f dirname

• remove non-empty directory as well as all of the sub contents therein:

$ rmdir -rf dirname

3. Here are some commands for killing jobs:

Sometimes you need to kill a job that’s running, perhaps because you realize it’s going to run for too long, or
you gave it or the wrong input data. Or you may be running a program like the IPython shell and it freezes up
on you with no way to get control back.

Many programs can be killed with <ctrl>-c. For this to work the job must be running in the foreground, so you
might need to first give the fg command.

Sometimes this doesn’t work, like when IPython freezes. Then try stopping it with <ctrl>-z (which should
work), find out its PID, and use the kill command:

$ ps
18917 ttys000 0:00.19 -bash
21181 ttys000 0:00.00 /bin/bash /Users/dongwook/anaconda/bin/python.app /Users/dongwook/anaconda/bin/ipython
21182 ttys000 0:00.19 /Users/dongwook/anaconda/python.app/Contents/MacOS/python /Users/dongwook/anaconda/bin/ipython

14 Chapter 2. Contents:

ams209_fall_2016 Documentation, Release 1.1

18921 ttys001 0:00.01 -bash
18925 ttys002 0:00.02 -bash
20647 ttys003 0:00.01 -bash
20656 ttys004 0:00.01 -bash
21171 ttys005 0:00.01 -bash

$ kill 21181

Hit return again you will see:

$
In [1]: Terminated: 15
$

If not, more drastic action is needed with the -9 flag:

$ kill -9 21181

This almost always kills a process. Be careful what you kill. Also try to see more options in using kill
command by typing man kill.

4. Setting up environment varialbes (case sensitive!):

• Environment variables: There are a couple of choices for Unix/Linux shells. One can categorize them into
two, Bourn shell and C shell, where in each category there are a number of variant shells. In this class we
use bash shell as our default choice.

Under any circumstances where your default shell might not the bash shell, you can initiate bash by
typing:

$ bash

in a terminal. This will start the bash prompt.

In Unix/Linux there are variables called environment variables which define various properties that are
important in the system. They include various variables, paths and shortcuts which can be set by the
system, users including you, or by the shells, or even by some of the programs that are installed or used
interactively with some other programs.

The following list includes several important environment variables that users often encounter (note that
they are all capitalized):

+------------------------+---+
| Variables | Description |
+------------------------+---+
| DISPLAY | Contains the identifier for the display that X11 programs should use by default. |
+------------------------+---+
| HOME | Indicates the home directory of the current user. the default argument for the cd |
| | built-in command, that is to say, typing 'cd' will jump to HOME from anywhere. |
+------------------------+---+
LD_LIBRARY_PATH	On many Unix systems with a dynamic linker, contains a colon-separated list of
	directories that the dynamic linker should search for shared objects when
	building a process image after exec, before searching in any other directories.
+------------------------+---+	
PATH	Indicates search path for commands. It is a colon-separated list of
	directories in which the shell looks for commands.
+------------------------+---+	
PWD	Indicates the current working directory as set by the cd command.
+------------------------+---+	
USER	Current user name(s)
+------------------------+---+

2.7. Lecture Notes 15

https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

ams209_fall_2016 Documentation, Release 1.1

Please see more in article-bash.

• Customizing enviromental variables in .bashrc or .bash_profile:

Such variables are exported to the system everytime you start a new bash shell, e.g., opening a new terminal
(in case bash is your default shell), or logining in to the system, or typing in bash. In these cases, a file
named .bashrc under your home directory is automatically executed. This means that you can always
customize your own enviromental variables settings by modifying .bashrc file. What you can do by
modifying the file includes:

– any custom excution of program on startup

– exporting environmental variables

– setting paths

– defining aliaes

– customizing your prompt, etc.

Here is an example of .bashrc:

#-----------------------------------
Print current user names
#-----------------------------------
u="$USER"
echo "user name $u"

#-----------------------------------
Export some paths
#-----------------------------------
export ams209svn="$HOME/Repos/ucsc/soe/teaching/2015-2016/Fall/AMS209/lectureNote"
export ams209git="$HOME/Repos/ucsc/soe/teaching/2015-2016/Fall/AMS209/ams209_git/lecture_note/"
export SVN_EDITOR="emacs -nw"
export IDL_DIR="/usr/local/itt/idl"
export PAPER_DIR="/Users/dongwook/Repos/ucsc/mongchi/DOCS/ucsc/research/papers"
export PATH="/usr/local/Cellar/colordiff/1.0.13/bin:/usr/local/bin:$PATH"
export PATH="/usr/local/Cellar/valgrind/3.8.1/bin:$PATH"

.

.

.

.

.

.

#-----------------------------------
Aliases
#-----------------------------------
Bash
export LSCOLORS=gxBxhxDxfxhxhxhxhxcxcx # dark background
alias lls='ls -laghFG'
alias clean='rm *~'

Commom Mac programs
alias reload='source ~/.bash_profile'
alias sublime='/Applications/Sublime\ Text.app/Contents/SharedSupport/bin/subl'
alias text='open -a TextEdit'
alias pre='open -a Preview'
alias grepp='grep -in'
alias sshy='ssh -Y'

16 Chapter 2. Contents:

http://tldp.org/LDP/Bash-Beginners-Guide/html/chap_03.html

ams209_fall_2016 Documentation, Release 1.1

There is another way to achieve the same using a different file called .bash_profile. You can
put all of the above in .bash_profile instead of .bashrc, and customize your settings as you
wish. One may ask then what is the difference between the two files. The answer for the Unix/Linux
system is that .bashrc is executed for interactive non-login shells (e.g., opening a new terminal),
whereas .bash_profile is executed for login shells.

In the above .bashrc example, you as a system admin are going to see a list of the current user
names logged in to the machine you just logged in, everytime when you open a new shell terminal.
Usually you want this information only once when you login to the machine and to keep prompting
this information on every new terminal would be unnecessary. To avoid this you can instead add such
monitoring/diagnostic tools in .bash_profile which will only be executed when logins.

This difference doesn’t exist in Mac OS X as an exception though and .bash_profile is invoked
for each new terminal window instead of .bashrc on Mac OS X operating systems.

In general, you don’t want to maintain the two separate files differently for login and non-login
shells, especially, you want to set PATH properly in both shells. A good way of consolidating the
two files into one can be done by sourcing .bashrc from .bash_profile. A good example of
.bash_profile then begins with:

#-----------------------------------
Source global definitions (if any)
#-----------------------------------

if [-f ~/.bashrc]; then
source ~/.bashrc

fi

#-----------------------------------
Print current user names
#-----------------------------------
u="$USER"
echo "user name $u"

With this you can put all the paths, custom aliases and common settings only in .bashrc.

For more information on the bash shells and enviroment variables please read the two articles and a
youtube tutorial:

• article: bash 1

• article: bash 2

• youtube: variables

• The which command is useful for finding out the full path to the code that is actually being executed
when you type a command. For example, if you have successfully installed gfortran and python on your
computer, you should be able to see:

$ which gfortran
/usr/local/bin/gfortran

$ which python
/Users/dongwook/anaconda/bin/python

$ which f77
$

In the latter case it found no program called f77 in the search path, either because it is not installed or
because the proper diretory is not on the PATH.

2.7. Lecture Notes 17

http://www.joshstaiger.org/archives/2005/07/bash_profile_vs.html
https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-a-linux-vps
https://www.youtube.com/watch?v=3BZzFRPYU_I

ams209_fall_2016 Documentation, Release 1.1

Version Control System – Managing Your Projects

Note This part of the lecture note has been partially extracted and modified from Prof. Randy LeVeque’s class website
on HPC.

In this class we will use git for

• homework submission,

• code project submission,

• final coding project submission,

• electronic file transfers needed for the course work between you and the instructor.

See the below for more information on using git and the repositories required for this class. There are many other
version control systems that are currently popular, such as cvs, Subversion, Mercurial, and Bazaar.

Version control systems were originally developed to aid in the development of large software projects with many
authors working on inter-related pieces. The basic idea is that you want to work on a file (one piece of the code), you
check it out of a repository, make changes, and then check it back in when you’re satisfied. The repository keeps track
of all changes (and who made them) and can restore any previous version of a single file or of the state of the whole
project. It does not keep a full copy of every file ever checked in, it keeps track of differences diff between versions,
so if you check in a version that only has one line changed from the previous version, only the characters that actually
changed are kept track of.

It sounds like a hassle to be checking files in and out, but there are a number of advantages to this system that make
version control an extremely useful tool even for use with you own projects if you are the only one working on
something. Once you get comfortable with it you may wonder how you ever lived without it.

Advantages

• You can revert to a previous version of a file if you decide the changes you made are incorrect. You can also
easily compare different versions to see what changes you made, e.g. where a bug was introduced.

• If you use a computer program and some set of data to produce some results for a publication, you can check
in exactly the code and data used. If you later want to modify the code or data to produce new results, as
generally happens with computer programs, you still have access to the first version without having to archive a
full copy of all files for every experiment you do. Working in this manner is crucial if you want to be able to later
reproduce earlier results, as if often necessary if you need to tweak the plots for to some journal’s specifications
or if a reader of your paper wants to know exactly what parameter choices you made to get a certain set of
results. This is an important aspect of doing ‘reproducible research’, as should be required in science. If nothing
else you can save yourself hours of headaches down the road trying to figure out how you got your own results.

• If you work on more than one machine, e.g. a desktop and laptop, version control systems are one way to keep
your projects synched up between machines.

Two Types of Version Control Systems: SVN vs. Git

Client-server systems (e.g., CVS, SVN) The original version control systems all used a client-server model, in
which there is one computer that contains “the repository” and everyone else checks code into and out of that reposi-
tory.

Systems such as CVS and Subversion (svn) have this form. An important feature of these systems is that only the
repository has the full history of all changes made.

Please see articles on comparison between svn and git:

• article 1

18 Chapter 2. Contents:

http://faculty.washington.edu/rjl/classes/am583s2014/notes/index.html
http://faculty.washington.edu/rjl/classes/am583s2014/notes/index.html
http://www.git-tower.com/learn/git/ebook/command-line/appendix/from-subversion-to-git

ams209_fall_2016 Documentation, Release 1.1

• article 2

both of which give brief overviews on two different client-server systems.

Distributed systems (e.g., Git) Git, and other systems such as Mercurial and Bazaar, use a distributed system in
which there is not necessarily a “master repository’‘. Any working copy contains the full history of changes made to
this copy.

The best way to get a feel for how git works is to use it, for example by following the instructions in the next section.

Remark Please also go watch the following Youtube video tutorials on git:

• video 1

• video 2

• video 3

Git for the Class using Bitbucket

Instructions for cloning the class git repository Note This part of the lecture note has been extracted from Prof.
Randy LeVeque’s class website on Git and has been modified sligtly.

All of the materials for this class, including homework assignments, sample programs, and lecture note (html and pdf)
are controled in a Git repository hosted at Bitbucket, located at ams 209 git.

In addition to viewing the class materials and associated files via the link above, you can also view changesets, issues,
and update histories, etc. as well. To obtain a copy of the class git repo, simply create one directory where you want
your copy to reside, say, ams209 in your home directory, move to the directory, and then clone the repository as
follows:

$ mkdir ams209
$ cd ams209
$ git clone https://bitbucket.org/dongwook159/ams209-fall-2015.git ./

If you fail to clone the repo with the following message:

$ fatal: Authentication failed

then this means that you haven’t been invited to join as a team member to have an access to the course repo. In this
case, please send me your email (preferably your ucsc email, rather than your personal email) so that I can send you
out an invitation. You are going to use the same email when you create your own Bitbucket account for your own later
(see Creating your own Bitbucket repository).

There is no (white) space in the above git command line. At this point, it is assumed you have git installed on your
OS. Otherwise, go visit download:git. The clone statement will download the entire contents of the class repository as
a new subdirectory called ams209.

Keep your cloned git repo updated/synced with the course repo The files in the class repository remotely hosted
in the Bitbucket website will continuously get changed and updated as the quarter progresses with new notes, sample
programs, and homework sets, etc. In order to bring these changes over to your cloned copy, all you need to do is

$ cd ams209
$ git fetch origin
$ git merge origin/master

The git fetch command instructs git to fetch any changes from origin, which points to the remote bitbucket
repository that you originally cloned from. In the merge command, ‘origin/master’ refers to the master branch in this

2.7. Lecture Notes 19

https://www.atlassian.com/pt/git/migration#!migration-share
https://www.youtube.com/watch?v=U8GBXvdmHT4
https://www.youtube.com/watch?v=tRTckrrCME4
https://www.youtube.com/watch?v=cEGIFZDyszA
http://faculty.washington.edu/rjl/classes/am583s2014/notes/git.html
https://bitbucket.org/dongwook159/ams209-fall-2015
http://git-scm.com/downloads

ams209_fall_2016 Documentation, Release 1.1

repository (which is the only branch that exists for this particular repository). This merges any changes retrieved into
the files in your current working directory.

The last two command can be combined as:

$ git pull origin master

or simply:

$ git pull

because origin and master are the defaults.

Creating your own Bitbucket repository In addition to using the class repository, you are also required to create
their own repository on Bitbucket. It is possible to use git for your own work without creating a repository on a hosted
site such as Bitbucket, but there are several reasons for this requirement:

• You should learn how to use Bitbucket for more than just pulling changes.

• You will use this repository to “submit” your solutions to homeworks. You will give the instructor and TA
permission to clone your repository so that we can grade the homework (others will not be able to clone or view
it unless you also give them permission).

• It is recommended that after the class ends you continue to use your repository as a way to back up your
important work on another computer (with all the benefits of version control too!). At that point, of course, you
can change the permissions so the instructor and TA no longer have access.

Below are the instructions for creating your own repository. Note that this should be a private repository so nobody
can view or clone it unless you grant permission.

Anyone can create a free private repository on Bitbucket. Note that you can also create an unlimited number of public
repositories free at Bitbucket, which you might want to do for open source software projects, or for classes like this
one.

Remark To make free open access repositories that can be viewed by anyone, GitHub is recommended, which allows
an unlimited number of open repositories and is widely used for open source projects.)

Remark Please take a look at an article comparing Bitbucket and GitHub

Getting used to your own local git repo We will clone your repository and check that testfile.txt has been created
and modified as directed below.

1. On the machine you’re working on:

$ git config --global user.name "Your Name"
$ git config --global user.email you@example.com

These will be used when you commit changes. If you don’t do this, you might get a warning message the first
time you try to commit.

2. Go to http://bitbucket.org/ and click on “Sign up now” if you don’t already have an account.

3. Fill in the form, make sure you remember your username and password.

4. You should then be taken to your account. Click on “Create” next to “Repositories”.

5. You should now see a form where you can specify the name of a repository and a description. The repository
name need not be the same as your user name (a single user might have several repositories). For example,
the class repository is named ams209-fall-2015, owned by user dongwook159. To avoid confusion, you should
probably not name your repository ams209-fall-2015.

20 Chapter 2. Contents:

https://github.com/
http://www.infoworld.com/article/2611771/application-development/application-development-bitbucket-vs-github-which-project-host-has-the-most.html
http://bitbucket.org/

ams209_fall_2016 Documentation, Release 1.1

You should stick to lower case letters and numbers in your repository name, e.g. ams209-ucsc or ams209-
scicomp might be good choices. Upper case and special symbols such as underscore sometimes get modified
by bitbucket and the repository name you try to paste into the homework submission form might not agree with
what bitbucket expects.

Don’t name your repository homework1 because you will be using the same repository for other homeworks
later in the quarter.

6. Make sure you click on “Private” at the bottom. Also turn “Issue tracking” and “Wiki” on if you wish to use
these features.

7. Click on “Create repository”.

8. You should now see a page with instructions on how to clone your (currently empty) repository. In a Unix
window, cd to the directory where you want your cloned copy to reside, and perform the clone by typing in the
clone command shown. This will create a new directory with the same name as the repository.

9. You should now be able to cd into the directory this created.

10. The directory you are now in will appear empty if you simply do:

$ ls

But it will look slightly different if you try:

$ ls -a
./ ../ .git/

the -a option causes ls to list files starting with a dot, which are normally suppressed. See Basic Unix/Linux
Commands for a discussion of ./ and ../. The directory .git is the directory that stores all the information
about the contents of this directory and a complete history of every file and every change ever committed. You
shouldn’t touch or modify the files in this directory, they are used by git.

11. Add a new file to your directory:

$ cat > testfile.txt
This is a new file
with only two lines so far.
^D

The Unix cat command simply redirects everything you type on the following lines into a file called testfile.txt.
This goes on until you type a <ctrl>-d (the 4th line in the example above). After typing <ctrl>-d you should
get the Unix prompt back. Alternatively, you could create the file testfile.txt using your favorite text editor (see
Items for the Class).

12. To see status of your folder, type:

$ git status -s

The response should be:

?? testfile.txt

The ?? means that this file is not under revision control. The -s flag results in this short status list. Leave it off
for more information.

To put the file under revision control, type:

$ git add testfile.txt
$ git status -s
A testfile.txt

2.7. Lecture Notes 21

ams209_fall_2016 Documentation, Release 1.1

The A means it has been added. However, at this point git is not we have not yet taken a snapshot of this version
of the file. To do so, type:

$ git commit -m "My first commit of a test file."

The string following the -m is a comment about this commit that may help you in general remember why you
committed new or changed files.

You should get a response like:

[master 31cb6ed] My first commit of a test file.
1 file changed, 2 insertions(+)
create mode 100644 testfile.txt

We can now see the status of our directory via:

$ git status
On branch master
nothing to commit (working directory clean)

Alternatively, you can check the status of a single file with:

$ git status testfile.txt

You can get a list of all the commits you have made (only one so far) using:

$ git log

commit 31cb6ed38310eed36f47d3d3aed769e03da540c9
Author: dongwook159 <dlee79@ucsc.edu>
Date: Fri Sep 25 00:04:14 2015 -0700

My first commit of a test file.

The number 31cb6ed38310eed36f47d3d3aed769e03da540c9 above is the “name” of this commit and you can
always get back to the state of your files as of this commit by using this number. You don’t have to remember
it, you can use commands like git log to find it later.

Yes, this is a number... it is a 40 digit hexadecimal number, meaning it is in base 16 so in addition to 0, 1, 2, ...,
9, there are 6 more digits a, b, c, d, e, f representing 10 through 15. This number is almost certainly guaranteed
to be unique among all commits you will ever do (or anyone has ever done, for that matter). It is computed
based on the state of all the files in this snapshot as a SHA-1 Cryptographic hash function, called a SHA-1 Hash
for short.

Modifying a file

Now let’s modify this file:

$ cat >> testfile.txt
Adding a third line
^D

Here the >> tells cat that we want to add on to the end of an existing file rather than creating a new one.
(Or you can edit the file with your favorite editor and add this third line.)

Now try the following:

$ git status -s
M testfile.txt

22 Chapter 2. Contents:

http://en.wikipedia.org/wiki/SHA-1

ams209_fall_2016 Documentation, Release 1.1

The M indicates this file has been modified relative to the most recent version that was committed.

To see what changes have been made, try:

$ git diff testfile.txt

This will produce something like:

diff --git a/testfile.txt b/testfile.txt
index d80ef00..fe42584 100644
--- a/testfile.txt
+++ b/testfile.txt
@@ -1,2 +1,3 @@
This is a new file
with only two lines so far
+Adding a third line

The + in front of the last line shows that it was added. The two lines before it are printed to show the
context. If the file were longer, git diff would only print a few lines around any change to indicate the
context.

Now let’s try to commit this changed file:

$ git commit -m "added a third line to the test file"

This will fail! You should get a response like this:

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working
directory)
#
modified: testfile.txt
#
no changes added to commit (use "git add" and/or "git commit -a")

git is saying that the file testfile.txt is modified but that no files have been staged for this commit.

If you are used to Mercurial, git has an extra level of complexity (but also flexibility): you can choose
which modified files will be included in the next commit. Since we only have one file, there will not be a
commit unless we add this to the index of files staged for the next commit:

$ git add testfile.txt

Note that the status is now:

$ git status -s
M testfile.txt

This is different in a subtle way from what we saw before: The M is in the first column rather than the
second, meaning it has been both modified and staged.

We can get more information if we leave off the -s flag:

$ git status

On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#

2.7. Lecture Notes 23

ams209_fall_2016 Documentation, Release 1.1

modified: testfile.txt
#

Now testfile.txt is on the index of files staged for the next commit.

Now we can do the commit:

$ git commit -m "added a third line to the test file"

[master 51918d7] added a third line to the test file
1 file changed, 1 insertion(+)

Try doing git log now and you should see something like:

commit 271bd14e5b8d68840e7e6481ad7e99e5708e50e7
Author: dongwook159 <dlee79@ucsc.edu>
Date: Fri Sep 25 00:02:34 2015 -0700

added a third line to the test file

commit 0c20925f98b5d76d0b973d25fdc78fd43941792e
Author: dongwook159 <dlee79@ucsc.edu>
Date: Fri Sep 25 00:01:25 2015 -0700

My first commit of a test file.

If you want to revert your working directory back to the first snapshot you could do:

$ git checkout 31cb6ed383
Note: checking out '31cb6ed383'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

HEAD is now at 31cb6ed383... My first commit of a test file.

Take a look at the file, it should be back to the state with only two lines.

Note that you don’t need the full SHA-1 hash code, the first few digits are enough to uniquely identify it.

You can go back to the most recent version with:

$ git checkout master
Switched to branch 'master'

We won’t discuss branches, but unless you create a new branch, the default name for your main branch is
master and this checkout command just goes back to the most recent commit.

1. So far you have been using git to keep track of changes in your own directory, on your computer. None of these
changes have been seen by Bitbucket, so if someone else cloned your repository from there, they would not see
testfile.txt.

Now let’s push these changes back to the Bitbucket repository:

First do::

$ git status

to make sure there are no changes that have not been committed. This should print nothing.

Now do:

24 Chapter 2. Contents:

ams209_fall_2016 Documentation, Release 1.1

$ git push -u origin master

This will prompt for your Bitbucket password and should then print something indicating that it has uploaded
these two commits to your bitbucket repository.

Not only has it copied the 1 file over, it has added both changesets, so the entire history of your commits is
now stored in the repository. If someone else clones the repository, they get the entire commit history and could
revert to any previous version, for example.

To push future commits to bitbucket, you should only need to do:

$ git push

and by default it will push your master branch (the only branch you have, probably) to origin, which is the
shorthand name for the place you originally cloned the repository from. To see where this actually points to:

$ git remote -v

This lists all remotes. By default there is only one, the place you cloned the repository from. (Or none if you
had created a new repository using git init rather than cloning an existing one.)

2. Check that the file is in your Bitbucket repository: Go back to that web page for your repository and click on
the “Source” tab at the top. It should display the files in your repository and show testfile.txt.

Now click on the “Commits” tab at the top. It should show that you made two commits and display the comments
you added with the -m flag with each commit.

If you click on the hex-string for a commit, it will show the change set for this commit. What you should see is
the file in its final state, with three lines. The third line should be highlighted in green, indicating that this line
was added in this changeset. A line highlighted in red would indicate a line deleted in this changeset.

Rolling back to a previous state Let’s take a look at the case where you do not like your last change you made to
your repo, and you want to revert your repo status back to a previous state, say,

• commit 1b82c21688befa80560807247594d73768d64f0a (the current unsatisfied revision) –>
commit c27d1bdf0098efe59aa25f809a719ce4fa910fef (the previous revision you wish to roll
back to)

In this case, there are two ways to roll back your repo to the previous state.

Firstly, if you do:

$ git reset --hard c27d1bdf0098

it will revert both the local code and the local history back to the previous state. This might look ok but it would fail
if you wished to push your reverted repo to the remote public repo especially when there is someone else in your team
who already has the new history from the state commit 1b82c21688befa80560807247594d73768d64f0a.

Instead, if you do:

$ git reset --soft c27d1bdf0098

it will only revert your local files back to the previous state, leaving your history unchanged. In this case, you can
successfully push your changes to the public repo without causing any conflicts in histories among your project team
members.

In case you want to recover files that are deleted locally, you can do:

$ git ls-files -d | xagrs git checkout --

Similarly, to recover modified files back to the previous states:

2.7. Lecture Notes 25

ams209_fall_2016 Documentation, Release 1.1

$ git ls-files -m | xagrs git checkout --

See more examples at https://git-scm.com/docs/git-ls-files. In some cases, you may wish to forget about all your local
changes and want git to overwrite the entire local files. In general, if you have some changes in your local files that
git sees as potential conflicts, git pull will not allow you to bring in the most recent updates committed to the git by
others. Git will give you errors such as:

$ error: Your local changes to the following files would be
overwritten by merge:

or:

$ error: The following untracked working tree files would be overwritten by merge:

In this case if you don’t mind overwritting your local changes with whatever available in the git, you can do the
following:

$ git fetch --all
$ git reset --hard origin/master

or you can combine the two in a single line command using &&:

$ git fetch --all && git reset --hard origin/master

Again, with this command, all of your local changes will be lost with or without –hard option, and therefore any local
commits that haven’t been pushed will be lost. So, you do this if you know what you’re doing and trust the recent
updates by pulling from the git repo.

Summary The commands we discussed so far will give you a good start with git. As you’re getting used to use git
you will learn that only a handful git commands are needed in many cases. This is in particular true unlesss you work
on the project with many other project members over the network. In our class it will primarily be yourself only who
will keep checking in and out changes to and from your central repo hosted in Bitbucket. Another frequent usage will
be to sync your local repo with the course repo on a regular basis.

In this simple project enviroment, you will most likely need to use the following commands:

$ git status
$ git add
$ git commit
$ git push
$ git pull

Accessing the Network Resources

Login via ssh

Basic syntax SSH, or secure shell is one of the most common way to access remote Unix/Linux servers over the
network by allowing users to logon to the servers with a secure protocol.

In this section we take a look at how to logon to the Grape AMS Lunux server remotely.

• The first step is to open a terminal.

• In the terminal, type in:

$ ssh yourID@grape.soe.ucsc.edu

26 Chapter 2. Contents:

https://git-scm.com/docs/git-ls-files

ams209_fall_2016 Documentation, Release 1.1

where yourID is your SOE login ID. You are going to be asked to type in your SOE password for a successful
login.

• You can also include -X or -Y after ssh in order to allow X11 Forwarding to view a remote system’s
graphical user interface (GUI) getting forwarded on to your local system:

$ ssh -Y yourID@grape.soe.ucsc.edu

• If your login is successful you should see something like the following on your terminal:

Last login: Mon Apr 27 17:52:34 2015 from mongchi.soe.ucsc.edu

Computer technical support requests can be submitted via the web at
https://itrequest.ucsc.edu

or by e-mailing
help@ucsc.edu

**

Online documentation for the grape cluster can be found at
http://grape.soe.ucsc.edu

Grape cluster is using the infiniband fabric.

**

Some Torque commands

qsub --> Submits a job (create a shell script, then run qsub shellscript)
use the -q option to specify which queue to use

qdel --> Delete a job
qstat --> see the status of jobs in the queue
qstat -Q --> List of usable queues
pbsnodes --> List status of all compute nodes

There are currently 4 queues on Grape

orig - compute-0-0-compute-0-4 PowerEdge 1950
Intel(R) Xeon(R) CPU 2.33GHz 15G MEM

new - compute-0-5-compute-11 Dell PowerEdge R610
Intel(R) Xeon(R) CPU 2.40GHz 15G MEM

newest - compute-0-12-compute-0-19 PowerEdge R420
Intel(R) Xeon(R) CPU 2.30GHz 32G MEM

default - includes all of the nodes. This is the
default queue.

**

Login into SSH with Keys One can set up key-based authentification once which can be very useful to log in to a
remote machine without typing in password in every login. To see more details, please read this article:ssh-key, and
this youtube:ssh-key.

2.7. Lecture Notes 27

https://www.digitalocean.com/community/tutorials/how-to-use-ssh-to-connect-to-a-remote-server-in-ubuntu
https://www.youtube.com/watch?v=GJbRSt7JJs8

ams209_fall_2016 Documentation, Release 1.1

File transfer via scp

There are many cases where you want to transfer files from host machine A to host machine B. scp is a command for
secured copy that allows you data transfer and provide the same authentication and same level of security as ssh.

• In the following examples we assume I am transfering fileA that resides in the direc-
tory /Users/dongwook/Documents/ in your local machine, to my HOME directory
/soe/dongwook/ams209/ on Grape:

$ cd /Users/dongwook/Documents/
$ scp fileA dongwook@grape.soe.ucsc.edu:~/ams209/

The last line can be also replaced with the command with a full explicit path:

$ scp fileA dongwook@grape.soe.ucsc.edu:/soe/dongwook/ams209/

• In case if I just want to transfer fileA to my HOME directory (which is /soe/dongwook instead of
/soe/dongwook/ams209/), it can simply be:

$ scp fileA dongwook@grape.soe.ucsc.edu:

• If I would want to transfer multiple files, fileA, fileB, etc., I just list all of them after scp:

$ scp fileA file B dongwook@grape.soe.ucsc.edu:

• If I want to transfer fileA to Grape in a different name, fileC in HOME directory:

$ scp fileA file B dongwook@grape.soe.ucsc.edu:~/fileC

File transfer via sftp

sftp command is another similar protocol as scp for file transfer, but also can be used to allow more interactive
commands such as generating new directories, deleting and moving files as well. For more details, please see article-
sftp.

Syncing files via rsync

rsync is not a secured file transfers (or syncs) between the two remote computers. However, it provides a consistent
way to maintain files in a two different locations. Please see more on wiki-rsync.

28 Chapter 2. Contents:

https://www.digitalocean.com/community/tutorials/how-to-use-sftp-to-securely-transfer-files-with-a-remote-server
https://www.digitalocean.com/community/tutorials/how-to-use-sftp-to-securely-transfer-files-with-a-remote-server
https://en.wikipedia.org/wiki/Rsync

CHAPTER

THREE

WEBPAGES OF CLASS MEMBERS

• Prof. Dongwook Lee, Instructor, AMS

• Arevalo, Daniel, AMS

• Bardales, Alexander, EE

• Biswas, Sudipto, SciCAM

• Ding, Zhehao, CMPE

• Dixit, Akhil, CMPS

• Ganjallzadeh, Vahid, EE

• Gonzalez Torres, Bernardo, CMPS

• Gulla, Roy, SciCAM

• Hancock, Alexander, CMPS

• Hou, Jiaql, EE

• Lam, Tuwin, EE

• Li, Yanzhong, CMPE

• Liu, Suhan, SciCAM

• Malik, Osman, CMPE

• Mazhari, Arash, CMPE

• Milenska, Lillya, SciCAM

• Nasab, Sara, AMS

• Pansodtee, Pattawong, CMPE

• Richardson, Jennie, BME

• Vargas, Brian, SciCAM

29

http://people.ucsc.edu/~dlee79/

	Announcements on Office Hours
	Contents:
	Disclaimers
	Course Mission
	About the Website
	License
	Syllabus
	Preliminaries
	Lecture Notes

	Webpages of class members

